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A problem concerning steady, capillary-gravitational waves of finite amplitude generated 
by pressure periodically distributed over the surface of an infinitely deep stream is con- 

sidered. A rigorous solution of this problem is presented,with the surface pressure given, 

in the form of an infinite trigonometric series. In addition a particular case is investi- 
gated when the wavelength of the given pressure coincides with the length of the steady 

free wave corresponding to the specified flow velocity and constant pressure at the sur- 

face. The waves investigated here cease to exist when the periodic part of the pressure 
distributed over the surface vanishes identically and the flow becomes uniform. Such 

waves have been called induced [I]. An analogous problem for gravitational waves was 
investigated earlier @] by the suthor. In addition, the author used the Levi-Civita method 
[3, 41 to reduce a similar problem for free capillary- gravitational waves, to a nonlinear 

differential equation. 

In the present paper the problem is reduced to solving a certain nonlinear integral 

equation. The latter is discussed and its solution is constructed for any degree of appro- 

ximation. The first three approximations are derived completely and an approximate 
equation describing the wave profile is given. 

1, Statement of the problem rnd derivation of ths b&tic fnte- 
grrl bqubtlon, Consider a plane parallel steady motion of a perfect incompre~ible 
heavy fluid bounded only from above by a free surface at which the pressure is given by 

PO = PO’ + PO tx). Here po’ = coust and p,, (z) is a given periodic function of the 
horizontal coordinate 2. The flow is assumed to move from left to right with constant 

velocity c, at an infinite depth, Since the pressure at the surface is a periodic function 

of 3, the surface assumes the form of a periodic wave, stationary with respect to coor- 
dinates attached to a progressive wave moving with velocity c. The present paper shows 

that induced waves exist for any finite values of c. 

Let the required wave and the pressure p. (cc) both possess the same symmetry with 
respect to the vertical through the wave crest. The y-axis is chosen so as to coincide 
with the axis of symme~, and is directed vertically upwards. The coordinate origin 0 
is placed at the point of intersection of y-axis with the free surface and the z-axis is 
directed to the right. 
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The xy-plane of flow is taken as the plane of the complex variable z = x + iy. 
Conventional notation is used: cp is the velocity potential, 9 is the stream function, 
w = cp + iq is the complex velocity potential, and Uand v are the projections of the 

velocity vector q on the coordinate axes. We then have 

dwldz == - U + iv, CT = - i&J I ax, v = - arpiay 
The basic equation of the problem is obtained from the boundary condition by confor- 

ma1 mapping of the region occupied by a single wave and represenred by a vertical semi- 

infinite stri.p bounded from above by a wavelike curve, onto a half-strip 0 < cp < CA, 
0 < 9 < 00 in the w-plane, and then mapping the latter onto the interior of a unit 

circle with the center at the coordinate origin of the plane u = u1 $- iu,. The wave- 
length A is assumed to coincide with the period of the function p. (5). 

The latter mapping is given by the known formula 

W-~lW6 - zni 
the wave profile transforming into the circumference of the unit circle with a cut along 

the radius arg u = 0. 
Mapping of the circle 1~1 & 1 on a region in the z -piane occupied by a single wave 

is defined from the following relation : 
f-n 

dZ k f @I -t=-.....-- 
du 2xi u ’ 

f (.!A> = 1 + 2 aph- 
k;=l 

The coefficients uL are real, since the wave is symmetric about the y-axis and a, = 1 
as the stream velocity at infinity is directed along the x-axis and equal to c. 

lJse of the function [l] 
0 (u) = @ + iz = - i In f fu) (1.3) 

together with (1.2) and (1.3) yields, for u = ei8 (0 is the angle formed by the radius 

vector and the u,-axis) a differential relation which, after separating the real and ima- 

ginary parts and integrating, gives the following parametric equation of the wave profile 

hf! 
0 

x=-z I 
e-’ (a) cos cf, (11) dq, y = - & \ e-T :*f sin cf, (q) dq (1.4) 

iJ 
i 

;i 
Formulas (1.3),(1.2) and (1.1) imply that the function d, is equal to the angle made 

by the velocity vector q with the s-axis everywhere in the stream and, that 

.Q = 1 q 1 = c exp (z) (I.51 

Passing to the boundary condition at the surface,we write the Bernoulli surface integral 

pip = c - 8i - vz q2 (1 A) 

where C is a constant, g is the acceleration due to gravity and p the density. At the 
free surface any pressure difference is balanced by the normal component of the surface 
tension. For the latter we have, by the Laplace’s rule, 

P - PO = zt P/R, PO = ~0’ 4 ~0 ix) (1.7 I) 

where p is the pressure exerted by the fluid, pO is the pressure from the direction of the 

free surface, p is the capillary constant and R is the radius of curvature at the points on 
the surface. Expressing the curvsure by dQ, / de we obtain 
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2np daJ 
P-l-%,= hc q--- dt) (1.8) 

InSertiOn of p from (1.8) into (1.6) now yields 
dcD 2Jf 
- = v 
dt) 

de-’ - e’ _ xxye-T - po* (z) e-5 1 (1.9) 
where 

v - XC2P 
4Tq.k ? 

8 = 2@P--D’) 
PC2 ’ X--p, (1.10) 

The quantity y appearing in (1.9) is given by the second formula in (1.4). Separating 
the terms linear in Q and $ in the right-hand side of (I, 9) we obtain 

8 (1.11) 

d@ 
de= 

Y 
i 
8--2+(&+l)z-j-s6 

s 
~(~)~~-~(e) (1-- z) -t-F l$, Q, s, 611 

0 
where 

F ir, @, S, 61 = 6 (e-Y - 1 + T) - (er - 1 - 4 + 

+ xc-r j le-y 

0 IJ 

(n)sincD-Q((rl)Jd~- 5tS a(q)dq-Fxe-TS O(q)dq- 
0 0 

- S (0) (e-’ --O1 -+- z) 

Here it is assumed that oi, 

ps” (z) = s (6) = 2 E?& cos ne (1.12) 
n=1 

where E is a small positive dimensionless parameter, &are given real numbers and the 
series 

i End,, 
VI=, 

converges in the circle e. > 0, holds with the accuracy to within a constant included 

in PO’. We note that in the initial problem po* (z) is a given periodic function of 5. 
It can however be shown that solving our problem under the condition (1.12) is equiva- 
lent to specifying the series 00 

PO” (z) = 2 E%,I cos 7 x, en’ = 2 ame;* 
*=I m=o 

We can either assume here that the coefficients con’ are given and use them to deter- 
mine &,or conversely we can obtain the coefficients cm,, (m = 1, 2, . ..) in terms 
of d,(see Sect.4, (4.3)). If it had been assumed that d, = don + &,,e +d2,@ + . . . 
(which had not been done here), then it would have been possible to assume that 
Cmn (m = 1, 2, 3, . ..) is also given, and to use them to determine din (i = 1, 2, 
. . .) or vice versa. 

Equation (1.11) connects the functions -C (0) and cl, (0) on the circle 1 u 1 = 1 , and 

the following known Dini relations are also valid for these functions 
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Let us transform the components of (1.11) by applying to them (1.13) and integrating 
by parts. Collecting now the terms containing the same integrand function dQ/dy and 

different kernels, we obtain 

K (TV, 0) and K, (TV, 0) = f 5 ‘OS nqnrs nH 
n=1 

where Kz (q, e) d enotes the first iteration of the kernel K (q, 6). 
The constants v and x in (1.11) are assumed known and 6 is found from the condition 

of periodicity CD (0 + 29-c) = @ (e) 

Since 8 (0) is given by (1.12). the solution of (1.11) and consequently 6 , will depend 
on a. Let us make the substitution 

6 = 6, + 8’ (E) (1.14) 

in (1.11). We then find from the condition of periodicity as E -+ 0 and from the fact 

that the quantity 6’ (E). and the solution both tend to zero, that 6, = 1 . 
After the necessary transformations and with (1.14) taken into account, Eq. (1.11) 

assumes its final form 
2s 

5 (Q) = v { \ K* @-I, 0) S @I) do -!- 6’ (8) -t 6’ (a) [ K (rl, 6) 5 (t-0 drl + 
; 0 

2x 

+$ K,(r,o)C( Id rl 11 - S (0) [i +r K(rl, 'WW+ 

0 

+ F IT, as, 1 -!-d'(E)]) (1.15) 

5 (0) = ‘ff , K* (rj, 0) = 5 ‘%I (q;;n(o) , n2 
vn =2n-_x 

n=1 
cpn (e) = “yg 

(1.16) 

where v,denotes the eigenvalues and (P,, (0) the eigenfunctions of the keruel K*(q,e). 
The assumption that the function r (0) in the expression for F is taken from (1.13) 

and 

implies that (1.15) represents a nonlinear integral equation for 5 (0) = dCDld0. 
The condition of periodicity of @ (0) gives 

an 

6’ (8) = - x s K2 h 0) 5 (rl) a+ K h ‘3 5 (7) dq] - 
0 0 0 

-- F [z’, @‘, S, 1 + 6’ (e)]) d0 (1.17) 

Thus the problem has been reduced to the determination of the function 5 (8, a) 

and the constant 6’ (a) from (1.1s) and (1.17). Furthermore z (0, E) is obtained from 

(1.13) and 

@ (0, e) = 5 5(% e) drl (1.18) 
0 
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In solving these equations two cases may be considered: the case when v # v, and 
the case when v = v,. 

In the first case the solution 5 (8, E) and the constant 8’ (e) are constructed in the 
form of series in integral powers of E. 

In the second case the solution appears as a power series in $13. 

In both cases linear Fredholm integral equations of the second kind with the kernel 

K* (11, 0) and the parameter v are obtained for the coefficients of the expansion for 
5 (6, e) . One linear equation is obtained for each coefficient of the expansion for 
6’ (8) . In the next section the equations defining the first coefficients of these expan- 
sions for the case y = v, are studied. 

2. Solution of the linear problem for the CPIJO Y =Y, rnd the 
invertigrtion of the kernel of the integral equation (1.15). Con- 
structing the solution of (1.1.5) and (1.17) in the form of power series in &‘/a, we arrive 

at the following system of equations defining the first coefficients of these expansions 

to=v[~KI(1,8)E,(rl)drl+6,-~~%K,(rl,0)5,(11)~~] (2.1) 
0 0 

61= -J K2 ho) 5lh)dll (2.2) 

0 

The same system of equations is obtained by assuming that S (Cl)= 0 (free wave) in 

(1.15) and (1.17) and retaining linear terms. 
Eliminating 6i from (2.2) and (2.1) and dropping the subscript, we obtain 

5 (0) = VT K* (% (9 5 A> drl (2.3) 
0 

Since this is a linear homogeneous Fredholm equation of the second kind, by the Second 
Fredholm Theorem this has a nonzero solution only when v = v, (v, is the eigenvalue 

of the kernel K* (q, 8). On the other hand by (1. lo), the parameter v > 0 while v,, 

according to (1.16). depends on n and x. Since the parameter x is assumed fixed, in 
order to arrive at a solution the dependence of v,on n must be investigated at a fixed 

value of x = x0. 

We now define the extremal value of v, . Differentiating with respect to n,we have 

dY,= 2n (n - x0) 
dn (2n - x0)% 

This implies that V, reaches its minimum value at 
n= x0 (2.4) 

At 2n = Xa the curve v, (n, X0) has a vertical asymptote. Function V, < 0 for 

0 < n< 'I9 x0 and v, > 0 for n > 1/s XO. 
In addition, the following property of v, is established : for any two positive integers 

m and 1 such a xOcan be chosen, that 
V m- - Vl (2.5) 

Indeed, inserting v,and vI into (2.5) we obtain a relation which, when solved for ‘x0, 

yields 
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(2.6) 
This particular value x,, will have a corresponding eigenvalue Y, = vr associated 

with two linearly independent eigenfunctions rpm (8) and ‘pr (e), i. e. the eigenvalue 
will be double. 

Thus inspection of V, = v, (n, x0) shows for a fixed x0 the eigenvalue index n > 

> ‘12 X0 must be taken. With such y = v, Eq. (2.3) will have one or two linearly 

independent solutions, and only a finite number of multiple eigenvalues will exist. This 
can easily be confirmed by constructing a graph of v,versus n for a fixed x = x0. 

Assuming n fixed, let us now see how v and x are related when (2.3) has a nonzero 
solution. Setting v = v, we have 

n2 
V=2n-_ (2.7) 

which can be written in the form 
1 -=- 
V 

;t en - x) (2.8) 

Inserting into the latter the values for v and x given by (1.10) we obtain the know?n 
hyperbolic relation connecting cs and 3~ 

2JV c2 = -n -t_ & 
bP 

This hyperbole has a vertical asymptote L = 0 and an oblique asymptote C’ = 
= gh / .&cn. In the first quadrant we find C’ min corresponding to h = h, and we have 

h, = hnl/p / pg, CLn = 21/W? / P 

The corresponding value of x can now be called critical and denoted by x, . From 
(1.10) we now find that x *==n (2.9) 

The hyperbolic branch.corresponding to the values 0 ( h ( A.., resembles the branch 

Ac2 = 2atpT2 / p corresponding to pure capillary waves. When h > h, , the values of 

c2 increase together with h and approach the asymptotic values c2 = gk / %cn corre- 
sponding to pure gravitational waves, 

For this reason the waves considered split naturally into two types. The waves of the 

first type corresponding to 0 < J. < h* or to 0 < x < X* = n, and called capillary- 

gravitational, and the waves of the second type corresponding to I. > h, or X* < x ( 

( 2n called gravitational-capillary. 
Relation (2.8) makes it possible to include a special case of 2n - x = 0. Indeed, 

(2.8) and (1.10) yield Zn-3c 1 4+ 
79 =U=- hC2P 

From this it follows that if 2n - x = 0, 1 / v = 0 and it must be assumed that 
p = 0. Consequently, (2.3) is replaced by an equation for gravitational waves without 
surface tension. 

To confirm this we must return to the initial equation (1.11). Assume in this equation 
S (0) - 0 retaining the linear terms only, dividing both sides of the resulting expression 
by v and substituting 1 / v = 0, we obtain s 

s-i-(8+1)~+xS~(rl)dll=O 
0 

Application of the first formula of (1.13) and integration by parts now yields 
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By (2.11). Eq. (2.10) becomes sx 

6 - i- (6 + 1) z + x [I x @I, 9) r (11) drl - r fi: (% 0) r PI) dq] = 0 

from which, setting a?% 

8=1$-xS Ul~O)Wl)~r\ 
U 

and retaining only the linear terms, we obtain 

- 2% (8) + j= R @I, 0) z 0)) drt = 0 (2.12) 

The eigenvalues of the kernel K (?J, 0) are equal to p,, = n. Since the condition 
x = 2n implies that X = 2~,, , Eq. (2.12) becomes the following homogeneous linear 
integral equation : 

~V-9 = J fWltW@lPl (2.13) 
0 

Since p,, are the eigenvalues of fy (Q e), the above equation for free gravitational 
waves has a solution at any positive integer rz. 

A different approach is also feasible. Differentiation of (2. IO) with respect to 0 yields 

(6 + 1) $j = x@ (0), or g = -& a, (0) 

which, when inserted into the first formula of (I, 13), gives 
2% 

m(e) = &\ Ko 0% 8) cf, @I) drl (2.14) 
0” 

The eigenvalues of the kernel fr’, (q, 6) are jJL, = n. Since here x = Zn, it fol- 
lows that x = &~,.Substituting 6 = 1 and x = &., in Eq. (2.12) we arrive at the 
following known integral equation for free gravitational waves: 

cf, (0) = P, r KO (q, 0) Q (q) EEL (2.15) 
0 

Finally we consider the case 1c = 0. For this case (2.7) yields & = n. But 237 = 
= Y, = n are the eigenvalues of the kernel li: (q, 0). On the other hand, when x L=: 
= 0, Eq. (2.3) becomes 

5 (0) = 2y f K (rt? 0) s (rl) dq (2.16) 
0 

The latter represents an integral equation for free capillary waves. Since 2v = v, = 
= r~, the equation has a solution for any positive integer rt. 

The results of our investigation of the linear problem can be stated as the following 
theorems. 

Theorem 2.1. Let 
1 

- = -$ (212 - x) 
V 
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where rz is a fixed positive integer. Then Eq. (2.3) has a 

t; (0) = c,qp, (cl) = -+os 
unique nontrivial solution 

720 

for all values of x within the interval 0 < x < 2n. 
If x = Xtrn) = 2mn / (m + n) (m is a positive integer), 

is also a particular solution linearly independent of (Pn (8). and 

5 (0) = Clcp, (0) + C,cp, (0) = -j$ cos n0 t $ cos m 0 

in the general solution. 

We shall call the values X = xfm) branching values. The waves corresponding to these 

values and defined by the solution c (0) in the form of a sum of two harmonics,shall be 
called double waves and the value x = 3c* = n - critical value, The latter divides 

the straight line (2.8) on the parametric plane (9 = 1 / Y; 5 = x) into two parts . 
Points on the first part correspond to the capillary-gravitational waves and the points on 

the second part to the gravitational-capillary waves. When m < n, a finite number of 
the points of bifurcation appears on the first part and an enumerable set of these points 

appears on the second part when n < m < + 00. 

Theorem 2.2. When x = 0 , Eq. (2.3) is transformed into (2.16) for pure capil- 
lary waves. For fixed 2V = V, = n , Eq. (2.16) has a unique nontrivial solution 

5 (0) == C,f $G cos ne where n is a positive integer. 

Theorem 2. 3. When 3~ = 212 + it is necessary to set 1 / v = 0 (consequently 
p = 0). Then Eq, (2.3) becomes (2.13) or (2.15) for pure gravitational waves. When 

n is a fixed positive integer, these equations have unique nontrivial solutions which are, 
respectively 

Theorem 2.4, Capillary-gravitational waves can be double waves ; but no pure 

gravitational or pure capillary double waves exist. 
The last theorem is a direct consequence of Theorems 2.1 - 2.3. It expresses the 

property which essentially differs the stationary capillary-gravitational waves from the 

stationary gravitational or stationary capillary waves . 
The linear problem on stationary free ~apilla~~~avita~onal waves has been studied 

by the author in [3, 4] where it was reduced to a solution of a differential equation in 

the complex domain. 

3, Solution of the b&tic squrtfont of the problem, It has already 
been stated at the end of Sect.1, that two cases must be considered when 5 (0, e) and 
6’ (E) are obtained from the basic equations (1.15) and (1.1’7), i.e. the case when 
v #= V, and the case when V = V,. A method of constructing a solution will be shown 
for each case and the first three approximations obtained. In the second case the value 
Y = vr is used as an example, the parameter x being chosen so as to make the eigen- 

valuevr simple and positive. 

l. “. The case y .;” v,,, As we already stated, in this case the solution is construcred 
in the form of series in inregraral powers of the parameter P. .A linear non~lomogeneous 
integral Fredholm equation of the second kind with parameter Y is obtained fur each 
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coefficient of the expansion of the function 5 (6, a) . The First Fredholm Theorem is 
used to solve all these equations consecutively. One linear equation is obtained for each 
coefficient of the expansion 6’ (e) , This equation presents an explicit expression for 

the coefficient of the given approximation in terms of the quantities obtained in the 
previous approximations. 

Expressions for 5 (0, E) and 6’ (e) obtained using the first three approximations fol- 

low 
5 (0, E) = E c,, cos 8 + Es c,, cos 20 + 9 (C,, cost) + c,, cos 30) 

(3.1) 
6’ (E) = - EX c,, + E2 I’/$ (Cl,2 - C,,) + 1/&q11 - 

- 8% ic,, + 1/Dc33 + %3W + 11aC11C22) (3.21 

Cl1 = vv& 
VT ’ c,, = - sv (dz -t ‘/J&I + 3/aG~“) (3.3) 

is a linear function of CI1’, C&as, G%, C&r C&s, 6. 
2”. The case of V = vt. Here a linear homogeneous Fredholm equation of the 

second kind, the value of the parameter being V = Vr , is obtained for the first coeffici- 
ent of the expansion for 5 (0, E) the latter constructed in the form of a series in powers 

of &‘ja. The Second Fredholm Theorem is used to solve this equation. Equations for all 

the subsequent coefficients are the same. but remain nonhomogeneous even withv = vt. 

The Third Fredholm Theorem is used to solve them. The coefficient appearing in the 
solution of the homogeneous, n th approximation equation is found from the condition 
of solvability of the ( TZ -j- 2 )-th approximation equation. 

The coefficients of the expansion for 6’ (e) are obtained in a similar manner to the 

case when v # v,. 

Here C1s* is a linear function of Ciz3, Cl&227 C&, CI1dz, Cl12d,, while CS* 

Expressions for 5 (0, E) and 6’ (E) obtained using the first three approximations fol- 

low 
6 (0, 8) = E?$ c,, CDS 8 + &Z’S (c,, Cos 0 + c,, cos 20) + 

+ 8 (C,, cos 0 + c,, cos 20 + C,, cos 30) (3.4) 
where 

Cl, = d;l*u’ls, a = 
32 (v2 - Yl) 

8 (v2 - Vi) + 9x%vz 

czz = +- xcl,“* ) Cl, = - 
X ( ‘,f&1i2 + 5&t) 

9 [I fx(l + 7v1v2x./8(vr--%))f 

c,, = lccllcl’L -“.-zc , 
Vl - v2 

cs3 = VlYQ c,,* 
v3 - Vl 

(3.5) 

Here css * is a linear function of c,,” and cllcs2; 6’1% is analogous to C,, but with 
different coefficients. 

It should be noted that in both cases z (6, E) is obtained from (1.131 and @ (0, e) 

from (1.18). 

4. Determfnation of the wpve profile. The wave profile is defined ir& 
the parametric form x (0, e) and y (6, E) from the relations (1.4) in which cf> (0, E) 
and ‘G (0, E) obtained should be inserted. Eliminating G from parameteric equation, 
we then obtain the equation for the profile in the form y = y (z, E). 
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Equations of the wave profife accurate to the third order terms are given below, set- 
ting k = 2X/X. 

For the case v j; v, we have 

y (z, E) = k-1 {EC,, (cos kz - 1) + “/* E2 (Cl,2 - C,J (1 - co9 2kz) + 

+ ‘/a E3 [@Cl, + 9/‘&c,,) (cos AZ - 1) + (1/3c,,3 - 6 /PC&22 + 

+ 2/3 C&OS 3kz - 1)l) (4.1) 

where the coefficients Cij are given by (3.3), while for the case v = v1 we have 

Y (5, 8) = k-’ (E”“C,, (cos kx - 1) + 1/2E*iai2c,, (cos ic;t: - 1) + 

+ ‘/a (Cl? - C,,) (1 - ~0s 2Wl -I- I/,, E I (6 Ci, + “/* C,,c,,) x 

x (cos kx - 1) + 3 ( CI,cl, - 1/2~23) (I - cos 2,~s) + (4.2) 

-i- (‘/scI,3 - %G,Czz t 2,‘a C,,) tcos3kz - 1)1} 

where the coefficients Cij are given by (3.5). 

Note 4.1. The conditions adopted for this problem place the coordinate origin 

at the wave crest. Therefore when 2 is almost zero. Y must be negative. From (4.1) 

and (4.2) it follows that the latter will be true only when C,, > 0. Assuming that 
Vi <V < v, (in the case of Y # v,) and by virtue of (3.3) and (3.5) we may con- 
clude that it is necessary to have d, > 0. 

Note 4.2. Eliminating 8 from (1.12) and the parametric equation of the profile 

we obtain an expression for the pressure given at the surface. as a function of E. For 

Y =/= Y, it has the form 

PO* 6-d = EdI cos kx + tz2 (d2 - d,C,,) cos Wz + 

+ ‘/a e3 W4dG, + 3/d, (2C1,’ - C,,)) cos kx + (6d, - 6d& + 

-+- 3/& (C,, - 2C,,2)) cos 3kxl (4.3) 

When v = vr, the formula obtained using the same approximation will be similar 
to the above, but containing only a single term. Formula (4.3) verifies the statement 

concerning the expression (1.12) made in Sect. 1. 

Note 4. 3. When v = v, , we have the particular case mentioned in the beginning 

of this paper. Indeed, when v = v,, formulas (1.10) and (1.16) yield an approximate 
linear expression (see formula following from (2.8)) connecting C and h in the case in 

question. 

6. Exirtancs and uniqueness of the solution of the problem. 
Applying the Liap~ov-Schmidt methods and their consequent development 151 we can 
establish the following theorems. 

Theorem 5.1. When v =#= v,, the system of equations (1.35) and (1.17) has a 

unique solution 5 (0, E) and 6’ (e) (6’ (8) = 6 (E) - 1) small in & and continuous 

in 0 (0 < 0 < 2n). Th’ 1s solution is an analvtic function in & for small 1 E 1 < 60. 
Theorem 5.2. When v = vl, the system of equations (I. 15) and (1.17) has a 

unique solution L (0, e) and 6’ (e) small in e and continuous in 8 (0 < 8 < an) 
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This solution can be represented by a series in powers of $11 converging uniformly and 
absolutely for small 1 E 1 < I?~. 

The proof of these theorems is not included here. It is only noted that the procedure 
is similar to that used in [S, 71. 

The above theorems imply that the series for @ (0, E) and t (0, E) converge uni- 
formly and absolutely. Convergence of the series in powers of E aud ~‘/a (in the case of 
v = vl) for integrand functions in (1.4) follows from the general theorems of analysis 

on substitution of one series into the other. The general theorems of analysis also yield 

the proof of convergence of the series (4.1). (4.2) and (4.3). 
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The principal assumptions in the construction of a general multivelocity model of a 
continuous multiphase medium are examined and the fundamental equations (for mass, 

momentum and energy) of mechanics are obtained for each phase in the heterogeneous 
mixture. On the basis of these equations a closed system is proposed which describes the 
motion of a dispersed mixture of two compressible phases in the presence of phase chan- 
ges. Energy transitions in phase transformations are analyzed. The fundamental relation- 

ships on the surface of the discontinuity are derived. Proceeding from the assumption of 


